leetcode 笔记
题目描述
给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。
如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。
设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。
返回可以切出边长为 maxLen 的正方形的矩形 数目 。
示例 1:
输入:rectangles = [[5,8],[3,9],[5,12],[16,5]]
输出:3
解释:能从每个矩形中切出的最大正方形边长分别是 [5,3,5,5] 。
最大正方形的边长为 5 ,可以由 3 个矩形切分得到。
示例 2:
输入:rectangles = [[2,3],[3,7],[4,3],[3,7]]
输出:3
提示:
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-rectangles-that-can-form-the-largest-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
code
-
c++
class Solution {
public:
int countGoodRectangles(vector<vector<int>>& rectangles) {
int size = rectangles.size();
vector<int> x;
for (auto& i : rectangles)
x.emplace_back(min(i[0], i[1]));
sort(x.begin(), x.end());
int ans = 0;
for (int i = size - 1; i >= 0; i--)
if (i == size - 1 || x[i + 1] == x[i])
ans++;
else
break;
return ans;
}
};